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1 Department of Oncology and Pathology, Karolinska Institute, P.O. Box 260, Stockholm,
SE-171776, Sweden

E-mail: Dzevad.Belkic@ki.se
2 Institute for Prevention Research, The University of Southern California School of Medicine,

Los Angeles, CA, USA

Received 14 December 2006; revised 12 January 2007

Key to cancer treatment and overall tumor control is early diagnostics. Remarkably,
Magnetic Resonance (MR) physics with the underlying mathematics for the reconstruc-
tion problems plays a pivotal role not only for early tumor diagnosis, but also for tar-
get definition, dose planning systems and therapy. The overall goal of this review is to
highlight certain novel mathematical methods for improvement of cancer diagnostics on
a quantitative molecular basis by retrieving key information which remains undetected
with standard data analysis. We intend to contribute to a large effort aimed at establish-
ing Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic
Imaging (MRSI) as two standard diagnostic tools for clinical oncology, with their com-
plementary roles relative to anatomical information provided by Magnetic Resonance
Imaging (MRI). Crucially, such efforts are within the realm of mathematical descrip-
tions of data measured by the MR methods and the related physical, chemical and bio-
medical interpretations. This can be achieved with fidelity by applying the fast Padé
transform (FPT) to MRI, MRS and MRSI. Thus far, we have completed the “proof of
principle” investigations demonstrating that the FPT is a powerful, stable parametric
processor with robust error analysis, which provides unequivocal quantification of in
vivo time signals encoded via MRS. These are the most stringent criteria imposed upon
MRS and MRSI by clinical oncology. The established overall reliability of the FPT
firmly justifies the present suggestion for undertaking further extensive applications of
the FPT to a variety of phantom and clinical time signals at vastly different magnetic
field strengths, with a broad range of signal-to-noise ratio (SNR). This would enable
Padé-based MRI, MRS and MRSI to soon join the standard diagnostic armamentar-
ium for clinical practice, especially in oncology. Of particular importance is to extend the
current applications of the FPT to in vivo MRS signals encoded from patients with e.g.
breast, prostate and ovarian cancers, so as to compare the obtained results with find-
ings from non-malignant tissue, that have presented differential diagnostic dilemmas,
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notably benign tumors, infectious or inflammatory lesions. The fact that the FPT is
capable of extracting unambiguous quantitative information from tissue via mathemat-
ical parametric analysis can be exploited to develop normative data bases for metabolite
concentrations versus the corresponding findings seen in malignancy. This would pro-
vide the needed standards to aid in cancer diagnostics, identifying malignant versus
benign disease with specific patterns of departures from normal metabolite concentra-
tions. Overall, this succinct review focuses on the benefits from a judicious intertwining
of spectral analysis from mathematics with quantum-mechanical signal processing from
physics as well chemistry, especially when these basic sciences are used synergistically
to enhance the diagnostic power of MRI, MRS and MRSI in clinical oncology.

KEY WORDS: Padé approximant, fast Padé transform, spectral analysis, signal process-
ing, quantification, early cancer diagnostics

1. Introduction

1.1. Main features of the fast Padé transform, FPT

The FPT is an eigenproblem solver from the family of the well-established
Padé approximant (PA), given by a polynomial quotient P/Q, which is undoubt-
edly the most often used mathematical model for rational response functions
in vastly different scientific, technological and industrial research fields, ranging
from speech processing, circuit theory, heart-rate variability, acoustics, statistics,
system theory, mobile phone communications, pharmacokinetics, bio-medical
engineering, milling machine industry, etc [1]. Numerical analysis in every com-
puter mainframe and mathematical software packages are literally inundated by
the Stieltjes continued fractions, as one of the most stable algorithms of the PA,
even for the most elementary Taylor or Maclaurin series expansions of trigono-
metric, exponential, or special functions, etc [1]. The fact that the PA has already
made gigantic strides across interdisciplinary research comes as no surprise by
reference to quantum physics whose finite-rank response function (Heisenberg’s
S-matrix element, Green’s function, Schwinger’s variational principle, Fredholm’s
determinant) [1,2] to any external perturbation is given by precisely the same
polynomial quotient as in the Padé approximant.

The PA has been reinvented under some other names in various disciplines,
e.g. in signal processing where it is known as the Auto-Regressive Moving Aver-
age (ARMA). Another clearly most important mathematical tool for the analysis
of linear discrete systems, known as the causal z-transform (ZT) [1], also reduces
to the usual PA. The ZT is a Maclaurin series development in powers of a com-
plex variable z, i.e.

∑
n cnz−n, with the expansion coefficients {cn} as a given

sequence of numbers. In signal processing, these expansion coefficients {cn} are
the known time signal points, or discretized auto-correlation functions, and z is
the harmonic variable defined as a frequency-dependent complex damped expo-
nential. In such a case, the ZT represents a spectrum in the frequency domain.
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There exists also the corresponding anti-causal z-transform which reduces to the
PA, as well. When such explicit reductions in the causal and anti-causal ZT are
carried out, the causal and anti-causal Padé z-transform (PZT) are obtained,
respectively. The FPT is a theoretical and algorithmic unification of the causal
and anti-causal PZT into a single framework [1]. Moreover, a single formula
exists in the form of the so-called contracted continued fractions (CCF) whose
odd and even parts represent the causal and anti-causal PZT, respectively [1].

Importantly, the analytical expression for the general expansion coefficient
an in the CCF has recently been derived [1] for the given Maclaurin series∑

n cnz−n with any model-free input data {cn}. Since, just like the ZT itself,
an arbitrary finite-order CCF also reduces either to the causal or the anti-
causal PZT, the availability of the closed expression for an automatically pro-
vides the analytical expressions for the polynomial quotients P/Q in the FPT.
Such analytical expressions for the expansion coefficients of the numerator (P)

and denominator (Q) polynomial serve as the benchmark data or the gold stan-
dard for verification of all the alternative numerical algorithms.

Furthermore, certain limiting values of the expansion coefficients of the
CCF yield the highly accurate zeros of Q, as in the well-known Rutishauser quo-
tient-difference (QD) algorithm, and these are simultaneously the poles of the
spectrum P/Q, since this latter quotient is a meromorphic function (a function
whose sole singularities are poles). The significance of such a simple procedure is
in finding all the poles in the investigated spectrum without resorting to any clas-
sical root-searching routines, e.g. the characteristic polynomial equation (Q = 0)

or the corresponding equivalent eigenvalue problem (Hessenberg’s matrix eigen-
value problem). Moreover, once all the poles of P/Q have been found in this
straightforward and easy way, the associated amplitudes can also be readily
obtained in the FPT from yet another analytical expression as the Cauchy resi-
due of the quotient P/Q. With this accomplishment, the FPT becomes a unique
signal processor which carries out the entire spectral analysis, i.e. solves the
quantification problem by using exclusively the analytical, closed formulae. This
is a veritable breakthrough, especially given that this latter problem is a noto-
riously ill-conditioned inverse problem when solved by any of the alternative
numerical algorithms [1].

1.2. Survey of the field from a clinical viewpoint

1.2.1. Magnetic Resonance-based cancer diagnostics: a brief overview
of achievements to date with standard data analytical techniques

First we will present MR-based methods that are becoming the modality
of choice for a rapidly expanding range of applications in oncology. For exam-
ple, MRI [3] being non-invasive, highly sensitive and free from ionizing radia-
tion, is indispensable for timely detection of many cancers. However, MRI often
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has poor specificity. Molecular imaging through MRS can enhance specificity
by detecting metabolic features characteristic of malignancy.1 Also, molecular
changes often precede morphologic alterations, so that sensitivity can be further
improved by MRS. This kind of molecular imaging is becoming widely appreci-
ated as an extraordinary opportunity for early disease detection, by identifying
key changes for the emergence and progression of cancer on the molecular
level. The combination of anatomic localization and insight into metabolic char-
acteristics from spectral information is often decisive for accurate and timely
identification of malignancy. This can be invaluable, especially in difficult cases,
e.g. differentiating recurrent tumor from radiation necrosis or post-operative
changes. These advantages have become particularly clear in neuro-oncology,
where MRI and MRS now are a key modality for brain tumor diagnostics
[4–7]. Clinical MR-based tools are a cornerstone of modern neuro-diagnostics
in general, with MRS becoming increasingly appreciated [8,9]. These tools have
also made an impact on prostate cancer providing diagnostic clarity unmatched
by literally any other non-invasive method [7,10–12]. Moreover, MRI and MRS
have improved diagnostic accuracy for e.g. breast cancer [13], non-Hodgkin’s
lymphoma2 [14,15], as well as head and neck cancers [16,17].

Notwithstanding these achievements, there are still important shortcomings
of current applications of in vivo MRS to clinical oncology that have hampered
wider implementation of this method in cancer diagnostics. Very few of the
metabolite concentrations or their ratios estimated in the standard way unequiv-
ocally distinguish tumors from normal tissue, nor are these specific for cancer.
Infection, infarction and demyelinating disorders, e.g. frequently show spectral
changes identical to those of brain tumors. Histopathological characterization
and brain tumor grading have been greatly aided by MRS. Nevertheless, there
are numerous contradictory findings in the literature. Particularly troublesome is
the limited possibility of MRS to detect very small tumors. For breast cancer
diagnostics using MRS, this is especially problematic, due to the need for lipid
suppression. A current strategy has been to increase echo time (TE), to decrease
overlap with lipid signal, but this is achieved by a diminution in signal intensity.
Also, metabolites with short T2 relaxation times will have decayed at longer TE;
e.g. myoinositol whose estimated concentrations best distinguished breast can-
cer from a fibroadenoma in our analysis [18,19] of in vitro MRS data [20]. Poor
SNR is a major cause of false negative findings using MRS to detect malignant
breast lesions [13]. Breast cancer detection through MRS has mainly relied upon
the presence or absence of a composite (total) choline peak. This compromises

1Unless otherwise denoted, MRS will be primarily referring to proton MRS, which is also denoted
as 1H MRS. However, this does not mean that the FPT is restricted to 1H MRS. Quite the contrary,
the FPT has no restriction whatsoever as to the type of resonating nuclei.
2As to the diagnosis of non-Hodgkin’s lymphoma via MRS, mainly 31P MRS has thus far been
used.
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diagnostic accuracy, since choline may be observed in benign breast lesions and
in normal breast during lactation. Furthermore, choline is often undetected in
small tumors that are then misclassified as benign [13].

Metabolite ratios are also problematic, being dependent upon TE [21],
and affected by confounding factors including cancer treatment itself. Conse-
quently, malignancy-defining ratio cut-points vary widely from author to author,
as reviewed recently in Ref. [7]. Even for prostate cancer diagnostics, where cho-
line-to-citrate ratios are of major help, dilemmas often arise. For example, in
stromal tissue or metabolic atrophy, citrate levels are low without cancer being
present, or with prostatic hypertrophy, citrate can still be high despite coexis-
tent malignancy [7]. For detecting tumors in deep-seated, moving organs, appli-
cations of MRS are hampered by poor SNR [14]. A case in point is the ovary
where early cancer detection is still beyond current reach. Because of the small
size and motion of this organ, in vivo MRS is mired by problems of resolu-
tion and SNR, and yet, there is a rich store of MR-observable compounds that
distinguish benign from cancerous adnexal masses when in vitro MRS with its
attendant high resolution is applied [22–25]. It has been suggested that insofar as
the current problems hindering encoding of high quality time signals and their
subsequent spectral analysis are overcome, in vivo 1H MRS could become the
method of choice for evaluating ovarian lesions [25].

1.2.2. Optimization of MRS for early cancer detection needs more advanced
signal processing methods

As described in the next sub-section, many problems with current applica-
tions of MRS within clinical oncology are directly related to a heavy reliance
upon the conventional signal processing method, i.e. the fast Fourier trans-
form (FFT). Optimization of MRS for timely cancer detection requires more
advanced signal processing than FFT. One may wonder: how could mathemat-
ics play such a critical role in medical diagnostics? This is the case because data
encoded directly from patients by means of existing imaging techniques, e.g. CT
(computerized tomography) or PET (positron emission tomography), as well as
MRI [26] and MRS [1,27] are not at all amenable to direct interpretation which,
therefore, need mathematics via signal processing.

2. Standard and novel signal processing methods

2.1. Standard estimation: limitations of the fast Fourier transform

The FFT has been widely used for data processing in clinical research
because of its steady convergence with increasing signal length N at a selected
bandwidth (or equivalently, with increasing acquisition time T ) , such that rea-
sonable looking MR shape spectra can usually be obtained for not so severely
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truncated time signals.3 This steady convergence means that there are no major
troublesome surprises for varying signal lengths. In sharp contrast, nearly all
parametric estimators show marked instability as a function of the signal length.
This is manifested in dramatic oscillations (e.g. spikes and other artificial spec-
tral structures) that appear prior to convergence, if at all, as emphasized in Refs.
[1,27]. Needless to say, such spurious findings are anathema to the clinical
demands for reliable spectral information aimed at aiding diagnostics.

Although computationally stable, the FFT is nevertheless a low-resolution
shape estimator. Within the FFT, a complex-valued Fourier spectrum is defined
by using only a single polynomial:

F ≡ Fk = 1
N

N−1∑

n=0

cne2iπnk/N (0 � k � N − 1), (1)

where the expansion coefficients {cn} are the time signal points. Resolution 2π/T
in the FFT is pre-determined exclusively by the total acquisition time T = Nτ ,
where τ is the sampling time. The FFT spectrum is defined only on the Fou-
rier grid points 2πk/T (k = 0, 1, . . ., N − 1). The standard strategy applied in
attempts to improve resolution has been to increase T and thereby decrease the
distance 2π/T between any two adjacent equidistant grid-points. This does not
solve the problem at all, because MRS signals become heavily corrupted with
background noise at longer T . Since these time signals decay exponentially as
a free induction decay (FID) curve, larger signal intensities are observed early
in the encoding. It is, therefore, advantageous to rapidly encode FIDs, avoid-
ing long T in which case mainly noise is measured. Thus, there are two mutu-
ally exclusive requirements within the FFT whose attempts to improve resolution
lead to worsened SNR. The FFT is a linear transform and, therefore, imports
noise as intact from the time to the frequency domain, further contributing to
poor SNR [1]. Moreover, the FFT has no extrapolation property based upon the
encoded FID.

The FFT is limited to non-parametric estimation, thus providing only
the total shape or envelope of spectral structures, but not their quantifications.
Peak parameters are subsequently extracted in post-processing by various fitting
devices whose most severe drawback is non-uniqueness. This means that e.g. 2,
3 or more resonances can yield the same fit to a given structure, with no way to
tell which of the fits is correct. These problems are most pronounced for over-
lapping resonances, which are often clinically important [28]. Many contradic-
tory findings are related to whether or not a given metabolite was included in the

3In practice, all experimental time signals are truncated, since infinitely long signals required by the
exact Fourier analysis cannot be measured. This is not critical for relatively long signals, but con-
siderable spectral deformation (Gibbs ringing) can arise for severe truncations, i.e. for shorter total
acquisition times.
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original expansion basis set for fitting [29,30]. Besides the fact that fitting is non-
unique, much information contained in the signal is not obtained in an adequate
way, such that estimates for position, width, height and phase of resonances can
be biased, despite a deceptive decline in the assessed Kramer-Rao error bounds.
This is due to the non-orthogonality of basis set elements used in fittings with
a serious deficiency that any change in one or more adjustable parameters could
largely be compensated by independent alterations in the remaining parameters,
as pointed out in Ref. [27]. Moreover, fitting algorithms require some initial val-
ues for the sought spectral parameters (complex frequencies and amplitudes).
Such starting values are unknown and they are guessed. Different guesses lead to
different sets of estimates for the spectral parameters. This indicates that differ-
ent local minima are found (as opposed to the correct, global minimum), thus
pointing to the non-reliability of all standard least square fitting routines. Metab-
olite concentrations can only be accurately computed if the spectral parameters
are obtained in a reliable way with an intrinsic and robust error analysis, as in
the FPT. The vital need for this quantitative information has been repeatedly
underscored with respect to MRS for cancer diagnostics [7–9,13,25,28].

2.2. Novel estimation: advantages of fast Padé transform with specific relevance
for MRS applications to cancer diagnostics

In our recent publications [1,27,31–44], it has been conclusively demon-
strated that the FPT can overcome simultaneously all the above-described limi-
tations of the FFT, that are of critical relevance for MRS applications to cancer
diagnostics. The FPT is a non-linear polynomial quotient PL/QK of the exact
finite-rank spectrum (the Green function) given by the Maclaurin series with
the encoded raw time signal {cn} as the expansion coefficients. Non-linearity of
the FPT yields noise suppression. The FPT shares the most favorable property
of the FFT, i.e. the FPT is a stable signal processor when the signal length is
systematically augmented, producing no spikes or other spectral deformations [1,
41]. In contrast to the FFT, the FPT is a powerful interpolator and extrapola-
tor. Due to extrapolation, which is present in the implicit polynomial inversion
via Q−1

K in PL/QK , inference is gained from a non-measurable infinite number of
time signal points by using only the available finite set {cn} ( 0 � n � N−1, N <

∞). The FPT can use the fixed Fourier mesh 2πk/T (k = 0, . . ., N − 1), but it is
not limited to this grid, as opposed to the FFT. In other words, the FPT can
be computed at any frequency ω. Resolution in the FPT is not pre-determined
by T , in contradistinction with the FFT. Moreover, the FPT has a better resolv-
ing power, relative to the FFT. Rapid convergence, improved SNR, enhanced
resolution and robust error analysis result in markedly improved information
content extracted by the FPT from in vivo MRS signals. These favorable fea-
tures of the FPT have explicitly been demonstrated in Refs. [1,27,41] via detailed
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comparisons of the FPT with the FFT using clinical in vivo MRS FIDs. Simi-
larly, we have checked that the FPT outperforms a number of parametric esti-
mators, such as the Hankel-Lanczos Singular Value Decomposition (HLSVD)
[45], Variable Projection Method (VARPRO) [46], Advanced Method for Accu-
rate Robust and Efficient Spectral Fitting (AMARES) [47], Linear Combination
of Model in vitro Spectra (LCModel) [48], etc.

Recently in Refs. [1,34–39] elaboration and validation is provided for a
number of powerful computational algorithms by which the FPT yields quanti-
tative spectral parameters. This is done without fitting and the solution is unique.
The FPT retrieves with fidelity overlapping or hidden resonances [1] that are
often of critical clinical relevance, as mentioned. Most recently, we have reported
explicitly on reconstruction of spectral parameters from FIDs of the type cus-
tomarily encoded clinically from healthy human brain by means of MRS [42–44].
With this accomplishment, it is thereby demonstrated that the FPT identifies and
unequivocally quantifies all physical resonances, including overlapping peaks that
are customarily left undetected by the FFT [1,42–44,49].

In this review, we shall expound the main ideas, goals and methods derived
from the basic interdisciplinary research on MRS and MRSI that sprang from
a judicious intertwining of quantum physics, mathematics, chemistry and medi-
cine. The roadmap for a comprehensive strategy emanating from this review has
been set in the two recent books on the subject covering the mathematical/phys-
ical [1] and clinical [7] aspects of the problem. In Ref. [1] thorough compar-
ative analyses were performed of virtually all the significant signal processors
available to MRS, such as the Lanczos Algorithm (LA), HLSVD, linear predic-
tor (LP), Padé-Laplace transform, Prony method, causal/anticausal z-transform,
beam-space diagonalization methods, Filter Diagonalization (FD), Decimated
Signal Diagonalization (DSD), Decimated Linear Predictor (DLP), decimated
Padé approximant (DPA), power and modified moment problem, quotient-differ-
ence (QD) (Rutishauser), product-difference (PD) (Gordon), continued fractions
(CF) (Stieltjes), etc. As a net outcome of such detailed testing, the FPT emerged
as the method of choice for MR physics in medicine and biology. One of the use-
ful side-products of such an undertaking is the acquired expertise for the usage
of many estimators that can serve as double checks and/or cross validation of
the findings from the FPT. Such an advantage might prove invaluable especially
for noisy data, and this is an asset to the main goals of the mentioned roadmap
which is, therefore, not limited only to the FPT.

2.3. The dimensionality reduction problem within the Padé methodologies

Large scale computations for huge systems with enormous dimension/length
and/or many degrees of freedom of the entry data to be analyzed/processed
are customarily encountered in many important studies across inter-disciplinary
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research including medicine, engineering and technology/industry. Invariably,
such exceedingly difficult and mathematically ill-conditioned problems have been
tackled with the iterative LA, first for an effective dimensionality reduction of
the initial problem via Jacobi tri-diagonalization, and then for extracting the
parametrized characteristics of the studied system. Alternatively, and advanta-
geously, the dimensionality problem has recently been solved very efficiently both
in the frequency and the time domain by means of the FD and DSD (or DLP,
DPA) [1]. These parametric estimators employ windowing or beam-spacing to
segment the initial large problem into a sequence of small problems in which
only small well-conditioned matrices are diagonalized to extract the parametrized
characteristics of the system. This segmentation is achieved by focusing on a part
of the whole system’s spectrum at a time without any loss of information by fil-
tering out the remainder from the huge input data. The individual segments are
subsequently inter-connected to cover the whole spectrum. Therefore, these pow-
erful algorithms can alleviate severe ill-conditioning and permit accurate, reliable,
robust and efficient reconstruction of the sought information from the entire sys-
tem. Over the years, we used the LA, FD, DSD, DLP, DPA and other related
algorithms in many applications in Nuclear Magnetic Resonance (NMR) [1], Ion
Cyclotron Resonance Mass Spectroscopy (ICRMS) [1,50]. It is our hope that a
similar practice will be pursued also by other researchers, since the dimensional-
ity problem is the bottleneck of all the other methods used in the MR literature
and beyond.

In some applications of NMR and MRS, it is necessary to go beyond
the usual one-dimensional parametric estimations. To this end, the FPT can
be used with confidence, since it automatically extends its applicability to
multi-dimensional processing, as a truly coherent spectral analysis by treating
all the variables simultaneously [2]. This is a great advantage relative to multi-
dimensional FFT, which is a sequential processing in this case (one variable at a
time) and, hence, inherently a non-coherent train of one-dimensional FFTs.

3. Theory of spectral analysis

3.1. Basic concepts on Padé rational responses to any external perturbation of
systems

Signal and image processing developed autonomously and remained for a
long time mainly within the realm of applied sciences as well as engineering.
Yet, here, very similar methods have been used as in the basic sciences. In elec-
tric circuit theory, a frequently used method is the so-called rational response
of the system to external perturbation [1]. This response is, in fact, the PA in
the frequency domain. As mentioned, precisely the same type of PA can also
be found in various fields that use signal processing (e.g. speech patterns, system
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theory, optimizations, etc) or in mathematical statistics under different acronyms
e.g. ARMA [1]. Many more opportunities might open up to further signal and
image processing, as well as to provide new tools for studying generic spectra
irrespective of their experimental or theoretical origins. This cross-fertilization is
anticipated to have a twofold benefit in the emergence of new high-resolution
signal/image processors for applied sciences as well as engineering and, in turn,
for basic sciences when analyzing spectra of large physical, chemical or biologi-
cal systems as well as living organs/species. The literature on signal and image
processing in applied mathematics and engineering is abundant with specially
designed methods for robust performance in industry and technology under rig-
orous requirements for accuracy, stability and reliability. To achieve such strict
goals, the most advanced mathematical methods have been used. These could
be exported to sciences for versatile applications. In order that such a practice
is developed further in a systematic rather than a sporadic manner, this review
encourages more cross-disciplinary interactions that could advantageously reduce
duplication in non-overlapping fields.

Reconstructing spectra and images from the received signals is a general
inverse problem with its intrinsic time development, which is ideally suited for
description by the Schrödinger picture of quantum mechanics. Therefore, it
could be beneficial for signal and image processing to intertwine with quantum-
mechanical description of stationary and time-independent phenomena. It is
only within recent years, as has thoroughly been reviewed in Ref. [1], that the
situation improved through using quantum mechanics and quantum resonant
scattering theory in signal processing, by relying upon the concept of auto-cor-
relation functions as the amplitude probabilities for survival of the Schrödinger
states of studied systems. In such an approach, the Schrödinger ordinary or gen-
eralized eigenvalue equations and the spectral problem of the resolvent or the
Green operator play pivotal roles.

The polynomial quotient PK /QK (diagonal) or PK−1/QK (para-diagonal) as
a rational function in e.g. harmonic variable z−1 = exp(−iωτ), is known in the
literature as the PA for the corresponding Maclaurin series in z−1. In signal pro-
cessing, the PA is alternatively called the fast Padé transform [37–39] to highlight
the possibility of obtaining a shape spectrum from an FID via a non-parametric
estimation as reminiscent of the FFT. The latter type of estimation is done by
simply evaluating the Padé spectrum (e.g. PK /QK ) without ever searching for
any of the spectral parameters that are the complex frequencies {ωk} and ampli-
tudes {dk}. In other words, the FPT can compute the envelope spectrum with-
out having to extract the spectral parameters {ωk, dk}. This is in sharp contrast
to e.g. HLSVD [45], which computes the envelope spectrum by first reconstruct-
ing the peak parameters {ωk, dk}. Most importantly, the FPT can perform para-
metric estimations by rooting the polynomial QK whose roots {z−1

k } yield {ωk}
and this leads to {dk} for each resonance. For example, the para-diagonal FPT
treats the exact spectrum, i.e. the mentioned Maclaurin sum which is in signal
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processing equal to the finite-rank Green function G N (z−1), via the unique ratio
of two polynomials PK−1(z−1)/QK (z−1) at any frequency ω:

G N (z−1) = 1
N

N−1∑

n=0

cnz−n, (2)

G N (z−1) ≈ PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
k

, (3)

PK−1(z
−1) =

K−1∑

r=0

pr z−r , QK (z−1) =
K∑

s=0

qsz−s, (4)

where z = eiωτ and zk = eiωkτ . In the FPT, the sum
∑K

k=1 dk/(z−1 − z−1
k ) rep-

resents the complex-valued total shape spectrum (envelope) which is the sum of
the K corresponding component shape spectra, dk/(z−1 − z−1

k )(1 � k � K ). Here,
PK−1 and QK are readily extracted from the input data G N by treating the prod-
uct G N QK in the defining relation G N QK = PK−1 as a convolution.

It should be noted that the FPT has its two variants denoted by FPT(+)

and FPT(−) that have their initial convergence range inside (|z| < 1) and outside
(|z| > 1) the unit circle, respectively. Being rational polynomials, both of these
variants of the FPT extend automatically their applicability to the whole com-
plex plane (inside as well as outside the unit circle) by recourse to the Cauchy
principle of analytical continuation. The expansion variables in the FPT(+) and
the FPT(−) are z+1 = z and z−1 = 1/z, respectively. The complex-valued spec-
trum in the para-diagonal form within the FPT(−) is given in Eq. (3). Similar
expressions exist for the FPT(+) [43, 44]. Interchangeably, the numerator and the
denominator polynomials in the FPT(+) and the FPT(−) will have the plus and
minus superscripts, P±

L and Q±
K , where the degree L is usually equal to K or

K − 1 for the diagonal or para-diagonal FPT, respectively.

3.2. Determination of the exact number of resonances by the FPT

Recently, we have demonstrated [1,43,44] that the exact number K of reso-
nances is extractable from the investigated time signal {cn} without the custom-
ary guessing used in the MRS literature. This is accomplished both in the time
and the frequency domain. The time signal is usually stored as the Hankel or
the so-called data matrix, HK (cn). We have shown that the FPT exists if, in the
time domain, the corresponding Shanks transform of order K is zero [1]. The
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Shanks transform of order K , as denoted by eK (cn), is proportional to a ratio
of the two Hankel determinants:

eK (cn) ∝ HK+1(cn)

HK (cn)
. (5)

Thus, the Shanks transform and the FPT exist if the following two conditions
are simultaneously fulfilled:

HK (cn) �= 0, HK+1(cn) = 0. (6)

In other words, the signature for the given signal to have precisely K resonances
is detected whenever both conditions in (6) are satisfied. In practice, to verify (6),
we compute recursively the sequence of Hankel determinants of increasing order
{Hm(cn)} (m = 1, 2, . . .) [1]. The first integer m′ = m at which (6) is satisfied
gives the total number of metabolites, K = m′. Moreover, if the time signal has
exactly K damped exponentials, then on top of (6), the following relationship is
also true:

HK (cn) �= 0, HK+m(cn) = 0 (m = 1, 2, . . .). (7)

In other words, the zero-valued Shanks transform as per equation eK+m(cn) = 0
(m = 1, 2, . . .) is the signature for the time signal {cn} to have precisely
K attenuated exponentials with stationary or non-stationary (polynomial type)
amplitudes that yield non-degenerate (Lorentzian) or degenerate (non-Lorentz-
ian) spectrum, respectively. We have shown in Refs. [1,42–44] that this procedure
for obtaining K exactly from the raw time signal {cn} is fully applicable to MRS
data.

In the frequency domain, we have developed another powerful procedure
for determining K exactly, and that is accomplished through the so-called pole-
zero cancellations [42–44]. This is achieved by computing a sequence of Padé
spectra {Pm/Qm} (m = 1, 2, . . .) in a frequency range of interest or in the whole
Nyquist range [−π/τ, π/τ ]. In this procedure, the exact number K of resonances
is determined when the following stability condition is detected:

PK+m

QK+m
= PK

QK
(m = 1, 2, . . .). (8)

This is possible by means of a truly extraordinary phenomenon called pole-
zero cancellations that is unique to the Padé polynomial quotients. The zeros of
the numerator polynomial PK are the zeros of the polynomial quotient PK /QK
in the FPT. Likewise, the zeros of the denominator polynomial QK are the poles
of the same Padé quotient PK /QK , because this latter rational function is a
meromorphic function, as mentioned. When both polynomials PK+m and QK+m
are written in their canonical forms, i.e. via products of terms containing their
respective zeros, then it is immediately apparent that Eq. (8) can be satisfied only
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if all the zeros and poles of PK+m/QK+m coincide with each other for m greater
than 1, provided that the spectrum has exactly K resonances. This leads to can-
cellations of all these poles and zeros beyond the order K which, therefore, must
be the sought exact number of resonances in the investigated frequency spec-
trum. The said cancellations reduce the ratio PK+m/QK+m to PK /QK for any
positive integer m greater than unity, and this is precisely the content of Eq. (8).
Moreover, we have shown that all the amplitudes of these cancelled pole-zero
doublets are equal to zero [42–44]. In this way, by this indeed remarkable fea-
ture of the briefly outlined pole-zero cancellation, the FPT is safeguarded with
fidelity against overestimating the true number K of resonances, since any other
higher value K + m (m = 1, 2, . . .) will certainly give exactly the same spectral
parameters and, therefore, the same spectra, as well as the same reconstructed
time signals.

3.3. Unambiguous identification of overlapping genuine resonances by the FPT

We have shown that the FPT can identify spurious resonances by analytical
methods; and how this is followed by a well-defined procedure for regulariza-
tion, via the so-called constrained root reflection with preservation of the mag-
nitude or power spectra [1]. Overlapping or hidden metabolites, including those
that may be disguised as noise, are retrieved with fidelity [42–44]. In realistic syn-
thesized models, we have illustrated that the FPT successfully identifies overlap-
ping peaks that are entirely missed by the FFT [42–44].

3.4. Treatment of Lorentzian and Non-Lorentzian spectra on the same footing
by the FPT

We have also shown in Refs. [1,27,41] that the FPT can treat both Lorentz-
ian (non-degenerate) and non-Lorentzian (degenerate) spectra on the same foot-
ing. This is a distinct advantage of the FPT relative to the HLSVD [45] which is
limited to Lorentzians only. Such a virtue of the FPT is very important, because
overlapping resonances can be non-Lorentzian and they are abundant in MRS
data. Moreover, as mentioned, overlapping resonances are often of utmost clin-
ical relevance.

4. The quantification problem

4.1. Reliable extraction of complex frequencies and amplitudes by the FPT

In Refs. [31–44] we implement and benchmark the computational algo-
rithms by which the FPT provides the peak parameters needed to quantify
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metabolite concentrations in MRS. This gives the unique and exact solution with
no recourse to any fitting whatsoever . Briefly, as stated, the complex spectrum
in the FPT is defined by e.g. the polynomial quotient PK−1/QK which nat-
urally leads to peaks at the zeros of the denominator polynomial QK . Thus,
root searching of QK gives the complex harmonic variables z−1

k (1 � k � K ),
so that the sought ωk is deduced via ωk = (i/τ) ln(z−1

k ). The corresponding
complex amplitudes {dk} are subsequently obtained from the analytical for-
mula given by the Cauchy residue of the polynomial ratio in the FPT via
dk = PK−1(z

−1
k )/Q′

K (z−1
k ), where Q′

K (z−1
k )=d QK (z−1

k )/dz−1
k . Hence, the resi-

due is evaluated only at one complex frequency ωk yielding the sought dk .This
is highly advantageous relative to the HLSVD and other parametric estimators
from MRS. In the HLSVD, all the found frequencies {ωm} are used to compute
a single dk . As a consequence, any found spurious frequencies in the HLSVD
would undermine the accuracy of the computed dk . The actual computations
of the amplitudes in the HLSVD are done by solving a system of linear equa-
tions as opposed to the analytical formula in the FPT. Thus, the FPT arrives at
the spectral parameters {ωk, dk} with minimal computational effort and maximal
accuracy. Here, the real {Re(ωk)} and the imaginary {Im(ωk)} part of ωk are the
position and the width of the kth peak, whereas {|dk | /Im(ωk)} and Arg (dk) are
the corresponding height and phase, respectively.4 Specifically, the FPT can first
find all the peak parameters of every physical metabolite without ever using the
Fourier or any other spectrum. The Padé spectrum

∑K
k=1 dk/(z−1 − z−1

k ) can be
constructed afterwards in the absorption, dispersion, magnitude or power mode.
Alternatively, the shape spectrum (i.e. the envelope of the peaks as reminiscent
of the FFT) can be obtained in the FPT without computing the spectral param-
eters {ωk, dk} by simply evaluating the quotient PK−1(z−1)/QK (z−1) at any fre-
quency ω where ω=(i/τ) ln(z−1). This is in contrast to all the other parametric
methods, such as HLSVD, LP, FD and the like that compute the shape spec-
trum only through the Heaviside partial fraction representation

∑K
k=1 dk/(z−1 −

z−1
k ) which, obviously, necessitates the spectral parameters {ωk, dk}. The FPT,

as a polynomial quotient, is the signal processor which is the most adapted
to the quantification problem in MRS. This is because the sought spectrum∑K

k=1 dk/(z−1 − z−1
k ) or

∑K
k=1 dk/(ω − ωk) is, in fact, itself a ratio of two poly-

nomials,
∑K

k=1 dk/(ω − ωk) = PK−1(ω)/QK (ω), precisely as in the definition of
the FPT. Hence, for such problems, the FPT actually becomes the exact theory
for spectral analysis of time signals comprised of damped complex exponentials
whose amplitudes can be stationary and/or non-stationary (polynomial type) [1].

4Hereafter, Re(u) and Im(u) denote the real and imaginary parts of a complex number u.
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4.2. Separation of genuine from spurious resonances by the FPT

Physical (genuine) and unphysical (spurious) resonances are disentangled
through their diametrically opposite behaviors at different partial signal lengths
N/M(M > 1). Resonances whose spectral parameters retain their stability within
a pre-assigned accuracy threshold at least for N /2 and N are classified as genu-
ine, whereas if this is not the case, they are considered to be spurious. These lat-
ter spurious resonances are removed from the final list of reconstructed spectral
parameters, so that only the genuine resonances are retained, as demonstrated in
Ref. [42–44]. This, in turn, improves SNR in the final absorption spectra of the
FPT.

4.3. Recapitulation of the main algorithmic aspects of signal processing within
the FPT

Using the FPT to analyze the encoded FIDs, the coefficients {pr , qs} of
the polynomials PK−1 and QK are computed efficiently by solving the sys-
tems of linear equations deduced from definition (2), by treating the product
in G N (z−1) ∗ QK (z−1) = PK−1(z−1) as a convolution [1,50]. Once all the pairs
{pr , qs} are obtained, the (non-parametric) envelope spectrum can be computed
by evaluating the quotient PK−1(z−1)/QK (z−1) at any selected frequency ω, as
discussed. To extract the peak parameters, one solves the characteristic equa-
tion QK (z−1) = 0. This latter polynomial equation has precisely K unique roots
z−1

k (1 � k � K ) and this yields the reconstructed fundamental frequencies
ωk from the already quoted relationship ωk = (i/τ) ln(z−1

k ). A similar procedure
applies to the diagonal FPT, i.e. PK /QK . Peak assignments can be made accord-
ing to the most accurate available in vitro data from e.g. Refs. [20,24,51,52]. For
reliable quantifications in MRS, it is not only the peak positions Re(ωk) that
count, because the peak widths Im(ωk) and the complex amplitudes dk are also
critical. This is due to the fact that the kth metabolite concentration is computed
from the reconstructed peak parameters. From the spectral parameters, one can
deduce the peak area underneath each resonance. Peak area is proportional to
the concentration of the metabolite, relative to a selected reference concentration
(water or another metabolite). Therefore, even for accurately determined ωk ’s, the
problem of obtaining the precise estimates of the dk ’s becomes extremely impor-
tant. In the FPT, the kth amplitude dk depends only upon the kth root z−1

k and
it is obtained analytically from the Cauchy residue theorem [1]. Moreover, unlike
guessing in the HLSVD [45] and in all the fitting algorithms from MRS [46–48],
the FPT determines the true number K of resonances exactly, by e.g. the concept
of Froissart doublets (pole-zero cancellations) [42–44]. Overall, the FPT com-
pletely avoids fitting and accomplishes accurate quantification by reliably extract-
ing the parameters of all the physical metabolites directly from the raw encoded
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FID. Specifically, when used as a parametric estimator, the FPT first finds all
the peak parameters {ωk, dk} (1 � k � K ) of every physical resonance without
ever using the Fourier spectrum, or any other spectrum. A spectrum can be con-
structed subsequently for e.g. visualization purposes, in any of the desired modes
(absorption, dispersion, magnitude, power, etc). On the computational side, our
MATLAB and C++ user-friendly software based upon the FPT, automatically
performs the entire quantification of raw encoded FIDs in a very efficient way
using only the standard programming. This software can be created as a portable
module to be mounted as an interface to clinical scanners for widespread use in
hospitals. Regarding the usage of the computer time, when implemented with the
Euclid algorithm, the FPT scales like N (ln2 N )2 with the signal length N [53,54]
for N = 2m (m = 1, 2, 3, . . .). This is of comparable efficiency to the FFT which
scales as N ln2 N . However, as opposed to the FFT, it is pertinent to re-empha-
size here that the FPT provides quantification en route. Additionally, and this is
what sets the Padé methodology apart from all the other parametric processors, the
FPT possesses the analytical formulae for the entire spectral analysis in the most
general case for any number of damped complex exponentials in the investigated
time signal [1]. This overrides the notorious ill-conditioning of the quantification
problem which is an inverse, mathematically ill-posed problem. Such a gold stan-
dard represents the most stringent test for the alternative numerical algorithms.

After having applied the FPT to in vivo MRS FIDs encoded from patients
with cancers and comparing this to the corresponding normative data, we
suggest performing statistical multivariate analysis to determine the best set
of metabolic predictors of malignancy, on a tumor-specific basis, using the
results of quantification by the FPT. Further, we plan to develop data bases
for non-malignant lesions that have presented differential diagnostic dilemmas,
notably benign tumors, infectious or inflammatory lesions. For the breast, e.g.
these non-malignant lesions include ductal hyperplasia, fibroadenoma, fibrocys-
tic changes, as well as lactating breast. We will use multivariate analysis to deter-
mine the best set of metabolic predictors of malignancy as opposed to benign
pathology. This latter step is of crucial importance for improving the specificity
of MRS and MRSI with respect to cancers.

5. Most recent results

5.1. Exact quantification in MRS by the FPT for theoretically synthesized FIDs

Confidence in the FPT is built systematically by considering synthesized
and encoded FIDs. For noise-free synthesized FIDs, the FPT returns all the
spectral parameters (irrespective of their number) within machine accuracy [42–
44,50]. For noise-corrupted simulated FIDs, all the known physical spectral
parameters are retrieved by the FPT with 3–4 accurate digits for SNRs of the
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level typically encountered in time signals encoded via MRS [43]. This latter
high level of accuracy is also consistently maintained when the FPT is applied
to FIDs encoded via MRS, as documented in our most recently published stud-
ies [27,40,41]. Although our initial studies on MRS [27,40,41] have focused on
envelope spectra, we nevertheless carried out quantifications. Such an occurrence
can be understood from the fact that these latter envelope spectra [27,40,41]
have been generated from the Heaviside partial fraction representation (3) which
relies exclusively upon the reconstructed fundamental frequencies and the corre-
sponding amplitudes as the key parameters for quantification.

We begin by presenting our results on spectra that correspond to a theoret-
ically generated (synthesized) FID which is reminiscent of time signals typically
encoded clinically from a healthy human brain via MRS using an external static
field B0 = 1.5 T and a short TE of about 20 ms, with total length N = 1024 and
bandwidth 1000 Hz so that τ = 1 ms (see e.g. [55]).

Table 1 gives the results of exact quantification via parametric spectral
analysis within the FPT. Shown are all the physical parameters of each of the
25 reconstructed resonances. For every peak, these retrieved physical quantities
include complex fundamental frequencies and the corresponding amplitudes that
yield the position, width, height and phase of the given resonance (all the phases
are set to equal zero in the input FID, dk = |dk | exp(ϕk) = |dk |, ϕk = 0, 1 �
k � 25). Such findings permit extraction of other physical quantities in terms
of which both the FID and its spectrum are clinically interpreted. These are the
transverse relaxation times T2 and concentrations of each metabolite.5 With this,
the clinical relevance of an estimator, which like the FPT can reliably recon-
struct concentrations of metabolites from encoded FIDs, becomes evident. As
seen in Table 1, the input spectral parameters are given with 4 digits of accu-
racy. Remarkably surpassing this latter level of precision, in Refs. [43] and [44],
the input spectral parameters have been defined with 12 digits of accuracy, but
still the ensuing reconstructions by the FPT were exact.

From the unequivocally reconstructed spectral parameters, we can gener-
ate the component spectra for every physical resonance. In Refs. [42–44], using
noise-free and noise-corrupted synthesized FIDs, we demonstrate that using at
most one quarter (N/4 = 256) of the full signal length (N = 1024), the FPT
can fully resolve and quantify all the constituent resonances, including those that
are isolated, overlapped, tightly overlapped as well as nearly degenerate. These

5A metabolite being a molecule can be associated with more than one resonance. Physically, using
1H MRS, concentration for a given chemical shift is proportional to the intensity of the correspond-
ing metabolite signal. This latter intensity itself is proportional to the total number of protons that
resonate at a given chemical shift. Chemical shifts vary from one compound to another depending
upon the extent of electronic shielding of the external static magnetic field strength B0. Although
very small, this shielding of B0 is the very reason for the existence of MRS. In this way, the con-
centrations of metabolites reveal the molecular compounds into which the resonating protons are
bound.
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Table 1
Converged Padé-reconstructed spectral parameters and concentrations of 25 resonances using only

220 FID points in the FPT(−).

Re( f −
k ) Im( f −

k )
∣
∣d−

k

∣
∣ Concentration

Peak # Assignment (ppm) (ppm) (au) (mMol/ww) Fraction

1 Mobile Lipids 0.985 0.180 0.122 7.930 0.71
2 Mobile Lipids 1.112 0.257 0.161 10.465 0.94
3 Mobile Lipids 1.548 0.172 0.135 8.775 0.79
4 Mobile Lipids 1.689 0.118 0.034 2.210 0.20
5 GABA 1.959 0.062 0.056 3.640 0.33
6 N-Acetyl

Aspartate
(NAA)

2.065 0.031 0.171 11.115 1.00

7 NAAG 2.145 0.050 0.116 7.540 0.68
8 GABA 2.261 0.062 0.092 5.980 0.54
9 Glutamate

(Glu)
2.411 0.062 0.085 5.525 0.50

10 Glutamine
(Gln)

2.519 0.036 0.037 2.405 0.22

11 Aspartate
(Asp)

2.675 0.033 0.008 0.520 0.05

12 NAA 2.676 0.062 0.063 4.095 0.37
13 Asp 2.855 0.016 0.005 0.325 0.03
14 Creatine (Cr) 3.009 0.064 0.065 4.225 0.38
15 Phosphocrea-

tine (PCr)
3.067 0.036 0.101 6.565 0.59

16 Choline (Cho) 3.239 0.050 0.096 6.240 0.56
17 Phosphoryl

choline(PCho)
3.301 0.064 0.065 4.225 0.38

18 Taurine (Tau) 3.481 0.031 0.011 0.715 0.06
19 Myoinositol

(M-Ins)
3.584 0.028 0.036 2.340 0.21

20 Glu 3.694 0.036 0.041 2.665 0.24
21 Gln 3.803 0.024 0.031 2.015 0.18
22 Cr 3.944 0.042 0.068 4.420 0.40
23 PCr 3.965 0.062 0.013 0.845 0.08
24 PCho 4.271 0.055 0.016 1.040 0.09
25 Water 4.680 0.136 0.113 7.345 0.66

Here, the quantity ‘fraction’ is defined as Cmet/CNAA, where Cmet and CNAA are the concentra-
tions of the given metabolite and that of NAA, respectively. All the listed assignments of the recon-
structed metabolites in this table have been made according to the data base from Ref. [51].

recent studies [42–44] represent a veritable paradigm shift for signal processing
in MRS with particular relevance to clinical oncology, due to the unprecedented
capability of the FPT to unambiguously resolve and quantify all the physical res-
onances. This is presently illustrated for noiseless FIDs in figures 1 and 2.
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Figure 1 shows the way in which the complex frequencies (left column) and
the absolute values of the amplitudes (right column) are retrieved by the FPT(−)

at FID lengths NP = 180, 220 and 260. It is seen that convergence is attained
for both of these spectral parameters at NP = 220 for all the 25 resonances.

In figure 2, we display the component and total spectra. Each resonance is
seen to have its spectrum, i.e. the component spectrum d−

k /(z−1 − z−1
k ). The sum

of all the component spectra gives the total shape spectrum
∑K

k=1 d−
k /(z−1−z−1

k ),
or equivalently, the envelope spectrum (right column) at a fixed partial signal
length. This figure shows how a given total shape spectrum is built from the cor-
responding component spectra. Illustrations are depicted for three partial lengths
NP=180, 220 and 260 of the full FID. The FPT component spectra are seen
in figure 2 to reach full convergence at NP = 220. These latter component
spectra from panel (ii) remain unaltered at NP>220 as shown on panel (iii) for
NP = 260. The same is true for the total shape spectra (panels v and vi). The
most striking feature of figure 2 is that even at NP = 180, the total shape spec-
trum (panel iv) has reached full convergence despite the lack of stability of some
of the corresponding component spectra (panel i). Namely, when passing from
NP = 180 (panel i) to NP = 220 (panel ii) a new resonance #11 at 2.675 ppm
is detected as a near degeneracy with its closely neighboring peak #12 at 2.676
ppm. Here, chemical shift splitting between peaks #11 and #12 is only 0.001ppm
(see also Table 1). Resonance #12 for NP = 180 is over-estimated, such that its
peak area is enhanced precisely by the amount of the missing peak #11. More-
over, the so-called residual or error spectrum of the envelope spectrum6 for NP
=180 does not indicate the absence of peak #11. However, the component spec-
tra require NP=220 in order to detect and accurately quantify peak #11. This
illustrates the non-reliability of a given total shape spectrum when it is used to
reconstruct the constituent component spectra and their peak parameters, as is
actually done in attempts to quantify via all the fitting recipes in MRS [46–48].

We now compare in figure 3 the performance of the FPT and the
FFT for absorption total shape spectra. Here, the resolution and conver-
gence rates are clearly seen to be much better in the FPT than in the FFT
at any partial signal length NP = N/M(M > 1). Especially striking
is that already at N/8 = 128, the FPT quite closely reflects the shape
of most of the converged spectrum. On the other hand, for the same frac-
tion N /8 = 128, the FFT is unable to distinguish between choline and cre-
atine around 3 ppm and, moreover, the four resonances within 3.5 – 4 ppm
appear as a broad and uninterpretable bump. The FPT(−) is seen to con-
verge at N /4 = 256 (panel vi) and this remains unaltered at N /2 = 512 and

6A residual (or error spectrum) in the FPT(−) is defined by the difference Re(F)[N ] −
Re(P−

K /Q−
K )[NP ] where the numbers in the square brackets indicate the FID lengths used in

the absorption Fourier and Padé spectra Re(F) and Re(P−
K /Q−

K ), respectively.
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Figure 1. Distribution of the input as well as reconstructed frequencies and amplitudes. Conver-
gence of the reconstructed spectral parameters of the FPT(−) is displayed at three partial FID
lengths (NP = 180, 220 and 260). The full FID length is N =1024. Throughout, spectral parame-
ters {ωk , dk} from the FPT(−) are denoted as {ω−

k , d−
k }, where ω−

k = 2π f −
k and f −

k is the linear
frequency. Notice that unlike the FFT, the FPT can use any partial signal length, and not just the
FIDs whose length is a special composite number, such as 2m (m = 1, 2, . . .). Hereafter, acronyms

ppm and au abbreviate parts per million and arbitrary units, respectively.
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N = 1024 (panels vii and viii) by virtue of Froissart doublets or pole-zero can-
cellations, as per Eq. (8). By contrast, the FFT converges only after exhausting
the full FID (N = 1024, panel iv).

5.2. Stable and rapid convergence of the FPT for experimentally encoded FIDs

Initially, performance of the FPT has been assessed in Ref. [32] for multi-
ple numerical integration (quadratures) that are commonly encountered in MR
physics. Therein, it was demonstrated that the FPT greatly accelerates conver-
gence (with increasing number of sampling points) and yields unprecedented
accuracy within 12 decimal places using only N= 512 or 1024 points relative to
only 2 decimal places in the FFT. Combined with its robustness and stability, it
was anticipated in Ref. [32] that the FPT will become the method of choice for
MRS, MRSI as well as MRI which is a two-dimensional quadrature. The evi-
dence of such an expectation from Ref. [32] has indeed become available in a
series of most recent studies [1,2,6,7,18,19,27,31–44,49,56].

The above-quoted high accuracy in quadratures from Ref. [32] should trans-
late directly into an increased resolution for quantification problems in MRS.
Indeed, in Refs. [27,40,41] on quantification in MRS at 4T and 7T, it has been
shown that, for partial signal length N/M(M > 1), the clinically relevant res-
onances determining concentrations of metabolites in the investigated tissue are
significantly better resolved in the FPT than in the FFT. In particular, it is verified
that the FPT can achieve the same resolution as the FFT by using twice shorter
time signals. As an illustration, this is also shown here for 4T in figures 4 and 5.

Error analysis is a key prerequisite for validity and usefulness of all para-
metric methods. This is illustrated in figure 6, which shows the so-called con-
secutive difference spectra as a proper measure of the error diminishing with
increasing number of FID points used in reconstructions. The left column
presents three consecutive difference spectra given by Re(P−

K /Q−
K )[N/32] −

Re(P−
K /Q−

K )[N/64], Re(P−
K /Q−

K )[N/16] − Re(P−
K /Q−

K )[N/32] and Re(P−
K /Q−

K )

[N/8]−Re(P−
K /Q−

K )[N/16], where N/64 = 32, N/32 = 64 and N/16 = 128. The
right column displays the further three consecutive difference spectra defined by
Re(P−

K /Q−
K )[N/4] − Re(P−

K /Q−
K )[N/8], Re(P−

K /Q−
K )[N/2] − Re(P−

K /Q−
K )[N/4]

and Re(P−
K /Q−

K )[N ] − Re(P−
K /Q−

K )[N/2], where N/4 = 512, N/2 = 1024 and
N = 2048. These six sub-plots of intrinsic error spectra demonstrate a steady
decrease of the local error in the FPT(−) when the number of signal points are
systematically augmented. Of course, error spectra that concern the FPT(−) can
also be generated by reference to other estimators e.g. the FFT. Likewise, the
error spectra can be constructed by using the two variants of the FPT as done
on the right columns of figure 7 showing the three residuals that are all related to
the whole FIDs (N = 2048): Re(F)[N ]−Re(P+/Q+)[N ](top panel), Re(F)[N ]−
Re(P−/Q−)[N ] (middle panel) and Re(P+/Q+)[N ] − Re(P−/Q−)[N ] (bottom
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Figure 4. Fourier and Padé absorption spectra computed using 3 partial signal lengths (N/32 = 64,
N/16 = 128, N/8 = 256) of the full FID (N = 2048, bandwidth = 6001.5 Hz) which has been

encoded by Tkáč et al. [57] at 4T from occipital grey matter of a healthy volunteer.
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panel). All the three latter error spectra are seen to be indistinguishable from
the background noise. Of particular importance are the entirely negligible val-
ues of the whole residual spectrum Re(P+/Q+)[N ] − Re(P−/Q−)[N ] at any of
the considered frequencies displayed on the right bottom panel of figure 7. This
is a very important internal cross-validation within the FPT itself showing that
its two variants, the FPT(+) and the FPT(−) are sufficient for establishing con-
sistency of this processor without necessitating external checking against e.g. the
FFT or other estimators.

Thus, as shown in figure 7, self-contained verification of all the results from
the FPT is secured by using systematically both its variants, the FPT(+) and the
FPT(−). The converged spectra from the FPT(+) and the FPT(−) are found to
coincide within the experimental background noise level, and this represents one
of the intrinsic cross-validations of the findings and robust error analysis of the
FPT without relying upon the FFT or any other estimator [27,41].

6. Discussion

In this review, we address several critical issues related to resolution
enhancement in signal and image processing of encoded biomedical data. These
issues are of key relevance to such important public health problems as timely
cancer diagnostics, screening, dose planning and treatment follow-up, as well
as monitoring of radiotherapy. Resolution improvements are essential for ade-
quate interpretation of data from patients and, hence, to clinical decision-mak-
ing. Insufficient accuracy of all the existing Fourier-based algorithms that are
commercially available and built into clinical scanners hampers progress, espe-
cially in diagnostic modalities based upon MRS and MRSI. Such a drawback
stems from the time-bandwidth bound (the Rayleigh bound) which is inherent in
Fourier methods and which limits resolution. Resolution is the weakest feature
of the FFT and other methods are not sufficiently reliable and robust for short
length noisy data records and overlapping spectral structures. Such obstacles can
be overcome through a paradigm shift which was recently introduced into the
MR research fields through an entirely novel strategy based upon the Padé meth-
odology. In particular, the FPT identifies with fidelity the system’s parameters
as the poles and zeros of the system’s response function extracted directly and
accurately from the encoded data that are noisy and abundant with overlapping
resonances. This critical feature, coupled with automated user-friendly software
implemented in situ via protocols for conventional scanners, will facilitates enor-
mously the clinician’s adequate interpretation of the data encoded from patients.
This is of paramount importance, since currently the wealth of biochemical
information on metabolic functionality of the examined tissue is virtually unex-
plored by MRS, and thus limited mainly to the anatomical insight given by
MRI. With this achievement through the FPT, it is envisaged that MRS and
MRSI will finally make their way to hospitals and thus become routine clini-
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12345
−0.5

0

0.5

1

1.5

2

2.5

3
PADE ABSORPTION TOTAL SHAPE SPECTRUM

N = 2048

K = 1024

Re(P+
K
 /Q+

K
) = Re( Σ

r=1
K p+

r
zr / Σ

s=0
K q+

s
zs )

PADE: FPT (+) B
0
 = 4T

(i)  Chemical shift (ppm)

R
e(

P
+ K
 /Q

+ K
) 

(a
u)

12345
−1.5

−1

−0.5

0

0.5

1

1.5

B
0
 = 4T

RESIDUAL or ERROR SPECTRUM for FULL FID

FFT(N) − FPT(+)(N)

N = 2048

K = 1024

(iv)  Chemical shift (ppm)

[R
e(

F
) 

−
 R

e(
P

+ K
 /Q

+ K
)]

 (
au

)

12345
−0.5

0

0.5

1

1.5

2

2.5

3
PADE ABSORPTION TOTAL SHAPE SPECTRUM

N = 2048

K = 1024

Re(P−
K
 /Q−

K
) = Re( Σ

r=0
K p−

r
z−r / Σ

s=0
K q−

s
z−s )

PADE: FPT (−) B
0
 = 4T

(ii)  Chemical shift (ppm)

R
e(

P
− K
 /Q

− K
) 

(a
u)

12345
−1.5

−1

−0.5

0

0.5

1

1.5

B
0
 = 4T

FFT(N) − FPT(−)(N)

RESIDUAL or ERROR SPECTRUM for FULL FID

N = 2048

K = 1024

(v)  Chemical shift (ppm)

[R
e(

F
) 

−
 R

e(
P

− K
 /Q

− K
)]

 (
au

)

12345
−0.5

0

0.5

1

1.5

2

2.5

3
FOURIER ABSORPTION TOTAL SHAPE SPECTRUM

Re(F) = Re( Σ
n=0
N−1c

n
z−n/N )

FOURIER: FFT B
0
 = 4T

N = 2048

(iii)  Chemical shift (ppm)

R
e(

F
) 

(a
u)

12345
−1.5

−1

−0.5

0

0.5

1

1.5

B
0
 = 4T

FPT(+)(N) − FPT(−)(N)

RESIDUAL or ERROR SPECTRUM for FULL FID

N = 2048

K = 1024

(vi)  Chemical shift (ppm)

[R
e(

P
+ K
 /Q

+ K
) 

−
 R

e(
P

− K
 /Q

− K
)]

 (
au

)

CONVERGED 3 METHODS (FOURIER & 2 VERSIONS of PADE) and THEIR MUTUAL RESIDUALS;  FID LENGTH :  N = 2048

Figure 7. The absorption total shape spectra at 4T for full signal length (N = 2048) are shown on
the left column for the FPT(+) (top panel), the FPT(−) (middle panel) and the FFT (bottom panel).
The right column shows the residual absorption total shape spectra for the full FID: top panel (FFT
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cal tools of a tremendous benefits to patients. Due to its unmatched reliability,
robustness, error analysis, accuracy, enhanced resolution and efficiency, the FPT
is bound to merge to MR technology and industry.

There is more to the FPT than MRS and MRSI that are the main theme of
this review. The overall scientific thrust of the present study comes from the need
for a unifying objective framework which intertwines in one whole the Padé-
optimized signal/image processing with mathematically tailored data acquisition
armamentarium, computer-based decision support and the control by the end
user. The end-user for the medical/clinical purposes is the physician, but the
outlined strategy is common to many similar problems in vastly different fields
in sciences, engineering, technology and industry (metrology, speech processing,
pattern recognition, mobile communication technologies, to name only a few).
For example, metrology in health care devices and instrumentation is in need
of methods and principles that can improve time- and space-resolution charac-
terization as well as localization of chemical interactions on a sub-cellular and
molecular level of the investigated tissue. This, as a very important spin-off from
the presently outlined strategy, can be provided by the FPT.

Additionally, it is important to realize that the analyzed signal processing
methods can be of direct use also to data acquisition. This can be accomplished
by designing new sequence encodings that are tailored not to the FFT, as done
in commercial scanners, but to the FPT. Such a novel vision is justified by the
capability of the FPT to handle data with short echo times that can enhance the
extraction of the information from the more insightful data due to the presence
of clinically relevant short-lived metabolites. With this latter strategy, the border-
line between data encoding and data analysis will become elusive, merging the
two parts into a unified framework. This, in turn, would sharpen the request for
more accurate experiments, thus making a natural bridge of the expounded sig-
nal processing avenues to high-precision measuring techniques from physics and
chemistry in the medical setting, as suggested by the present review.

7. Conclusions and outlooks

7.1. Significance of MR physics for oncology

It is stunning that progress in imaging for cancer diagnostics, surgical ther-
apy, radiotherapy, therapy planning and target definition relies heavily upon fur-
ther fundamental advances within the three MR-based clinical tools: MRI, MRS
and MRSI [58–63]. This is especially due to the potential of MRS and MRSI
to provide detailed metabolic information on molecular and bio-chemical lev-
els with superior specificity for a steadily increasing number of clinical applica-
tions, ranging from diagnosis to tumor treatment. Distinctly improved specificity
of MRS and MRSI over other imaging techniques for e.g. diagnosis of tumor
and other neoplastic diseases stems from the possibility of yielding quantitative
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information on the investigated tissue. Moreover, such information is multifaceted
and could be extracted through various clinically relevant parameters e.g. con-
centrations of tissue metabolites, relaxation times, chemical shifts, etc. By means
of these parameters, the functionality of the examined tissue can be character-
ized in such great detail as to reveal the physical state and chemical bonds of
tissue molecules that are the carriers of the resonating magnetic nuclei. Further-
more, it is especially important to emphasize that this is achieved in a completely
non-invasive manner, i.e. without disrupting any of the physiological and meta-
bolic functions of the tissue. This is the case because magnetic resonance leads
to an extremely small energy dissipation in the tissue, far below the threshold
needed for the damage of any living cell.

MRS and MRSI can revolutionize both diagnostics as well as therapy, and
surpass the conventional anatomical/morphological information from MRI by
providing a needed deep molecular insight into the scanned tissue. As a key to
overall strategy of cancer treatment, early tumor detection by MRS and MRSI is
potentially superior to MRI. This is due to two major factors: (i) improved spec-
ificity and (ii) detection of molecular changes prior to anatomical manifestation
of the emergence and progression of the disease. Moreover, due to its full volu-
metric coverage of the investigated tissue, MRSI as a combination of MRI and
MRS, can improve substantially a number of diagnostic and therapeutic strate-
gies in clinical oncology, thus opening novel avenues in radiotherapy, chemother-
apy and surgical oncology.

Such possibilities stem from a better delineation of target lesions and tumor
boundaries by MRI (as automatically shared by the MRSI) than by other
oncological non-MR-based imaging techniques. This superior target definition
is secured by an excellent sensitivity of MRI to detect pathology, and such a
property is imported into MRSI, which is a hybrid of MRI and MRS. A high
sensitivity of MRI to depict pathology is a great success in clinical diagnostics
and surgical planning. However, MRI lacks sufficient specificity. This drawback
is circumvented by recourse to MRS which has an excellent sensitivity, and such
an advantage is inherited by MRSI as per design. Hence, MRSI preserves the
two best features, sensitivity and specificity, of MRI and MRS, respectively. The
advantage of MRSI over MRS is that the former exhibits full volumetric multi-
voxel coverage of the tissue, whereas the later is for a single voxel. This differ-
ence is clinically significant, since a single selected voxel might not be sufficiently
representative of the whole tissue volume affected by the disease.

Despite the enumerated practical advantages over virtually all other com-
petitive methods, both MRS and MRSI still necessitate a more thorough scru-
tiny beyond the initial investigations/success before their full clinical utility
could be firmly established through evaluations and cross-verifications, especially
against the corresponding histopathological findings, whenever these are available
for correlations purposes.
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7.2. Key role of mathematics via signal processing, especially by the fast Padé
transform

It is remarkable that the full potential of MRS and MRSI in clinical
practice is not made apparent by the direct availability of the final act of mea-
surement, i.e. by the encoded time signal or FID. Encoded FIDs need to be
interpreted by theory in order to extract the clinically useful information. This
theory is a judicious combination of the spectral methods from mathematics,
physics and chemistry applied to measured data. Specifically, it is through signal
processing that the encoded FID and the ensuing theoretically generated spec-
trum are characterized by a set of parameters that capture the physico-chemical
and bio-medical information from the examined tissue [1].

These parameters are physical quantities called spectral parameters, and
they are given by a set of pairs of complex numbers that represent complex fre-
quencies and complex amplitudes. Each such pair characterizes a given physi-
cal/genuine resonance/peak in the spectrum. The real and imaginary parts of the
complex frequency are the chemical shift and the inverse of the relaxation time,
T2. The absolute value of the complex amplitude is proportional to the height of
the resonant peak, with the constant of proportionality being the relaxation time
of the same resonance. The phase of the complex amplitude is the phase of the
FID. In this way, both the FID and the associated spectrum are simultaneously
parameterized by quantitative mathematical methods of spectral analysis or sig-
nal processing.

Such a physico-mathematical parameterization of the results of encoding
yields the sought bio-chemical and clinical characterization of the tissue content.
Each metabolite, being a molecule, can exhibit one or more resonances in a stud-
ied spectrum. Therefore, once the results of spectral analysis become available,
metabolite concentrations, as one of the most relevant clinical markers, can be
deduced directly from the reconstructed spectral parameters. This quantitative
analysis, accompanied with error analysis, must be carried out with utmost reli-
ability for the obtained spectral parameters, regarding their total number, accu-
racy and stability against noise, in order that MRS and MRSI could maintain
their proclaimed power of enhanced specificity. It is precisely here that the math-
ematical theory of signal processing plays a decisive role, and especially the fast
Padé transform, FPT, is optimally suited for this demanding, challenging and
vitally important task.

7.3. Summary of open directions for urgent studies

There is an urgent need for accurate quantification to determine metabolite
concentrations, so that MRS can be better used to detect and characterize can-
cers, with clear distinction from non-malignant processes [7]. Metabolite concen-
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trations can only be accurately computed if the spectral parameters are obtained
in a reliable way with an intrinsic and robust error analysis. This is provided by
the FPT.

We anticipate that MRS via Padé processing will reduce the false posi-
tive rates of MR-based modalities and further improve the sensitivity of these
methods. Once this is achieved, and given that all MR-based diagnostic meth-
ods are free from ionizing radiation, new possibilities for cancer screening and
early detection will open up, especially for risk groups, e.g. the application of
Padé-optimized MRS in younger women at high risk for breast cancer. The need
for accurate quantification of closely overlapping resonances has been partic-
ularly underscored for breast cancer diagnostics using MRS [18,19,31]. More-
over, MRS via Padé processing would be a promising avenue for early detection
of ovarian cancer, which, is extremely problematic with the standard diagnos-
tic methods. Further, MRS with the accompanying Padé quantification applied
to prostate cancer is particularly important for diagnostic enhancement, because
of the current dilemmas surrounding prostate cancer screening (e.g. cut-points
of prostate specific antigen, etc), as well as the public health importance of this
malignancy.

Overall, the methodologies reviewed in this study aim to enable Padé-based
MRS to soon become a standard tool for clinical oncology [1,7]. This power-
ful and versatile signal processor is optimal for MRS, due to the usage of the
unique rational polynomial approximation, which most naturally describes reso-
nant peaks in molecular absorption spectra that stem from tissue.

As discussed, the Padé approximant is, in fact, the exact theory whenever
the function to be modeled is itself given by a ratio of two polynomials. Such
are the spectra from MRS. This hardly leaves any doubt as to which mathemat-
ical method is best suited for studying MRS. Such a conclusion extends auto-
matically to MRSI which encounters precisely the same type of time signals as
in MRS.

Time signals analyzed in this review are comprised of damped complex
exponentials with either stationary or non-stationary amplitudes that correspond
to non-degenerate (Lorentzian) or degenerate (non-Lorentzian) absorption spec-
tra. This particular form is the correct mathematical and physical description of
attenuated oscillatory motions of any system, since such modeling represents the
most general expression for the auto-correlation functions or time signals pre-
dicted by the Schrödinger picture of quantum mechanics [1], which is universally
applicable to all phenomena, including those occurring in living organisms.
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fast Padé transform: Potential relevance for early breast cancer detection by magnetic reso-
nance spectroscopy, J. Math. Chem. 40 (2006) 85.
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